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Abstract applied to a wide range of power circuits that includes the
resonant type converters. The basic limitation in resonant

The method of state-space averaging has been successfully converters is that these circuits have state variables that ex-

applied to pulse-width modulated power converters, but has hibit predominantly oscillatory behavior. This paper investi-

its limitations with switched circuits that do rot satisfy a gates a more general averaging scheme that can, in principle,
accomodate arbitrary types of waveforms. The method is"small ripple" condition. This work considers a more general based on a time-dependent Fourier series representation for a

averaging procedure that encompasses state-space averaging "sliding window" of a given waveform. For example, for an
and is potentially applicable to a much broader class of cir- arbitrary time-domain waveform x(s), the method considers
cuits and systems. In particular, the technique is shown to the Fourier coefficients of x(s) for a E (i - T, il at the time
be Pff'"ct",e on a P,imber of exampies including :esonant type instant t. Simplifying approximations can be made by omit-
converters. ting insignificant terms in this series. For instance, to recover

the traditional state-space averaged model, one would retain
only the DC coefficient in this averaging scheme.

1 Introduction .Previously developed methods for analysis and control de-
sign in resonant converters have relied mainly on two ap-

State-space averaging [1, 2, 3] has been demonstrated to be proaches, sampled-data modeling [4, 5] and phase-plane tech-
an effective eet hod for analysis and control design in pulse- niques [7, 8]. The sampled-data approach taken in [4, 51 re-

width modulated (PWM) switching power converters. How- sults in a small-signal model for the underlying resonant con-
ever. as has been noted in the literature, the class of convert- verter with the perturbation in switching frequency as the

ers that this method can be applied to is limited. Conditions input. One difficulty with this approach is the requirement

for the justification of state-space averaging have been char- of obtaining a nominal periodic solution as a first step in the

acterized by a "small ripple" condition, by a "linear ripple" analysis. The utility of the resulting model is then limited by
approximation [11, and by the degree to which certain vec- its small signal nature. The phase plane method of 17] is a

tor fields commute [2]. With the small ripple approximation, basic approach to obtaining a steady state solution for a res-

the assumption is that a Fourier series expansion for a finite onant converter. and the control scheme of [8] based on this
length segment of a circuit waveform should be dominated method is evidently effective. A limitation of this approach

by its DC term. The linear ripple approximation requires is its restriction to second order systems; it is not obvious
that the circuit waveforms appear to be linear functions of how one can incorporate additional state variables that are

time when examined over a time interval inbetween switch associated with the load or the source dynamics. In contrast,

instances. This condition has been stated more precisely in the method presented in this paper is an averaging scheme
[2] in terms of the Lie bracket of a pair of matrices. A re- that can be applied, in principle, to any periodically driven

cent paper [6] studied the application of classical averaging system.

techniques in PWM circuits, and has developed an asymp- The remainder of the paper is organized as follows. Sec-
totic framework where solutions to switched systems may be tion 2 reviews some of the main techniques used in analyzing
approximated to arbitrary accuracy by a power series in a oscillations in nonlinear systems. Our approach is outlined
small parameter. The small parameter is evidently related to in Section 3 and will be seen to be very closely related to
the ratio of the switching period and the system time con- the classical methods discussed in Section 2.' Examples of the
stants. We note here that this ratio is typically small for fast application of our method in resonant and in PWM convert-
switching P\VM circuits, but this is typically not the case for ers are presented in Section 4. Appendix A contains some
resonant type converters, comments on the justification of our scheme.

Because of the conditions listed above that limit the ap-
plicability of state-space averaging, the method cannot be

*The first d second authors would like to acknowldge suppoet 2 Averaging and Oscillations in

from Tandem Co,,,puters Inc. and the Berkeley Redandsal Art, 1 f Nonlinear Systems
lee, peuaee Disky project (NSF) MIP-87-i523-5. The third and fourth
mtaihors have been supported by the MIT/Industry Power Electronics
Collegium and by the Air Force Office of Scientific Research under Grant One of the pioneer, in the study of oscillations in noulin-
AFOSR-88-0032 ear systems was van der Pal [II] who studied a periodically

-S



driven, nonlinearly damped oscillator modeled by

f, + O$v)t + &&02 = W2 Bsin(wi) 0Z

The paper [IlI postulated a solution of the form

v(t) = ba(+)sin(.: 1 L) +. h(f)cos(wt) (2)

where b1 (t) and bN(f) were supposed to be slowly varying func-
tions of time. That is, for k 1,2, 1/

t;0() q , ,b(t)(3)

w t1 L(i) (4)

Van der Pol's method proceeds by firstly inserting the po - Figure 1: Nonlinear Feedback System
tulated solution (2) into (1) and extracting the fundamental
harmonic response from the nonlinear element in the model in such a system that has an external periodic input. The
(1). (The extraction of the fundamental harmonic response is basicpremiseyte th des fntin metod inpht Tknow as armoic ineaizaton nd i essntilly quivsen premise of the describing function method is that r(t)
known as harmonic linearizag function method described below.) is approximately a sinusoidal waveform, i.e.

ondly. harmonic balance is imposed to obtain two equations, x(t) ; Xjin(wt).
one in si n (,a t) and one in cos(w, t). The result is a state-space (9)
model that governs the behavior of the coefficients bi(t) and
&Z(1). The method '-, be introduced in Section 3 draws on If the nonlinearity is not too severe, that is it does not gen-

these ideas, but makes slightly different assumptions. crate excessively large harmonics, and if the linear transfer
A simrilar approach to the study of the second order sys- function G(s) is a good low pass filter, the assumption that

tem (1) was taken in the work of Krylov, Bogoliubov, and x(t) is sinusoidal is quite plausible. The describing function

Mitropolsky [121. This work relied on the assumption of method characterizes it) by its fundamental frequency com-

slowly -arying phase and amplitude, i.e. postulated a so- ponent

lution of the form M(t) ts (X)z(t) (10)

'(1) = a(f)sin~ujoi+0(1)) (5) where X(X) is the ratio of the fundamental component of
i,(t) = a(f)-s,0t + 0() (6) y(t) to that of r(t). V(X) is called the sinusoidal describing
i'(t) = a(t)w'ocos{'ot + Oft)} (6) function for N(9) and is dependent on the amplitude X of

where a 1) and 0(i) were supposed to be slowly varing func- the oscillation. For the loop of Figure 1, the condition for a

tions of time. An implicit constraint arising from (5,6) is steady state oscillation is

that 1 + G(jwW(X) = 0, (11)

i(t).,,{wot + 0()) + a(L)O(t)cos{woL + 0()) = 0. (7) or equivalently

The mephod of [12] proceeds similarly to van der Pol's tech- G(jw) = -I/.A(X). (12)
nique by substituting the postulated form of solution (5,6)
into the nonlinear differential equation (1) to derive a state- The power of the method is evident from (12) since this
space equation for the variables a(t) and 0(t). The assump- equation can be solved graphically by plotting G(jt) and
tion of slowly varying phase and amplitude is used to deduce -1/3/(X) on the complex plane and determining intersec-
an arergd model for the evolution of a(f) and 0(t). The av- tion points of these graphs. Each intersection point (X,w)
eraging operation performed in the method of [12) is actually generates a candidate for an approximate limit cycle solution
equivalent to harmonic linearization in that the fundamental of the form
component of the response of the nonlinear element of (1) is z(t) f X'.in(,?i). (13)
extracted. See [12] for more details on this method or the The paper of Bergen and Franks [14] gives conditions under
summaries in [10, 13].

Another technique that is closely related to the methods which an exact periodic Anlution is nearby and gives error

outlined above is the describing function method discussed bounds on the approximate solution in terms of the opera-
in detail in Gelb and Vander Velde [13]. This method relies tors G(jw) and N(o). The describing function method can

also be used when periodic external signals enter the system.on harmonic balance for analyzing steady state and transient I hscsoesesaproi ouinwt udmna

oscillations in nonlinear systems. To understand the method, In this case, one seeks a periodic solution with fundamental

consider the autonomous system of Figure 1 that has a static frequency equal to the drive frequency. The 3inusoitai de-

nonlinearity N(e) in the feedback path. The input to the scribing function method generates the amplitude and phase

nonlinearity is labeled x(t) aid the output is of an approximate solution.
The describing function technique has been generalized for

y(t) = N(z(f)). (8) the analysis of transient oscillations in [131. The generaliza-
tion assumes a solution of the form

The sin,;oidal describing function method is a technique for
analyzing limit cycles in a system of the type of Figure 1 or (i) = X(I)e J*', (14)
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which can be identified with the method of slowly varying Differentiation with respect to time The time deriva-
phase and amplitude [121 if one takes 0b(t) = wet + 0(t). The tive of the k-th coefficient is computed to be
transient analysis proceeds by noting that

it) = " + .j4.,X d (z&(t) \ (, i)- , ) (20)y(di

( (15) This formula will be very important in computing the form
+ of an averaged model involving the Fourier coefficients. The

case where w. is time varying will also need to be considered
and identifying these quantities by for the analysis of systems where the drive frequency is not

constant, e.g. in resonant type converters. In this case, the
M= (WO) + js(t). (16) formula (20) is only an approximation, but, for slowly varying

Although not clearly stated in (131, the method evidently it is a good approximation. Appendix A gives details

then replaces G(jw) by G(a + jw) and imposes harmonic on the approximations involved.

balance by replacing nonlinearities with amplitude-dependent
describing functions. The result is a pair of coupled differ- Transforms of functions of variables Another impor-

ential equations (corresponding to real and imaginary corn- tant ingredient in the Fourier series coefficient representation
ponents) in a(t),,(t), and the derivatives of these variables, of a signal involves the computation of the following:.

Reference 1131 continues by giving approximate schemes for (.(71,1. .. , ))& (21)
solving the obtained differential equations. Our method con-
sidered in the sequel is closely related to the transient and where f(.,..., ) is a general scalar function of its arguments.
steady state analysis techniques that rely on describing func- One approach for computing the quantity (21) is by the de-
tions. scribing function method 1131. As outlined earlier, this would

require the w-;iniption that the arguments 1,x3-....z, are
sinusoidal in nature or perhaps have some other fixed wave-

3 Generalized Averaging shape. For instance, one special case is where it is desired to
compute (f(:)), and (f(1))i, and it is known that z is dom-

Our averaging method is based on the fact that the waveform inated by its fundamental Fourier components. This would fit
r(s) can be approximated on the interval (t-T, tj to arbitrary the framework of the sinusoidal describing function method.
accuracy with a Fourier series representation of the form An example of this type is given in Section 4 in the context

of a resonant converter.
r(t. s) = x(t - T + s) = (.r)k(t)eJ ' (t - +) (17) A procedure for -xactly computing (21) is available in the

& case where f(..... ) is polynomial. The procedure is based
on the following convolutional relationship:

where the sum is over all integers k, w, = 2r/T, 8 E (0,T],

and the (.r)k(t) are complex Fourier coefficients. These )= "(z).-()i (22)
Fourier coefficients are functions of time and are determined
by Iwwhere the sum is taken over -1 integers i. In many cases, we

(x)k(t) / (t - T + q)e- ' -r+) da. (18) shall rely on many of the terms in the series in (22) being neg-
T o0 ligibly small. The quantity in (21) can be computed in the

The k-th coefficient will also be referred to as the index-k co- case where f(s,...,e) is a polynomial by considering each
efficient. Note that the strategy here is to consider a window homogeneous term separately. The constant and linear terms
of length T of a given waveform, and to view the waveform -" vivia to transform. The transforms of the quadratic
as periodic (or having finite duration T) so that it can be :crni' 7an be computed using (22). Homogeneous terms of
analyzed with a Fourier series. The remaining steps in the f,,, ", irder can be dealt with by factoring each such term
analysis simply compute the time-evolution of these Fourier ini .e product of two lower order terms. Then the proce-
series coefficients as the window of length T slides over the dure can be applied to each of the factors. This process is
actual waveform. Our approach in doing so is to determine an guaranteed to terminate since factors with only linear terms
appropriate state-space model in which the coefficients (18) will eventually arise.
are the states. In this way, the technique is very similar to
the classical methods for analyzing nonlinear oscillations. - Application to state-space models of power electronic

As an aside, note that one possible approach for deriving circuits Here we consider the application of the method to
the theory of state-space averaging is to consider the one-cycle a state-space model that has some periodic time-dependence.
average This is the type of model that typically arises in a switched

(t) = ! fz(s) d, (19) power electronic circuit. For instance, consider the model
T i-? d

for the state x(t) of a sitcliinZ converter operating at fre- -jz(t) = f{z(t),u(1)) (23)
quency i/T. The connection with our scheme is that 1(t) --

(.a)o() corresponds to the DC coefficient in the Fourier series where u(t) is some periodic function of time with period T.
representation (17). More details on this are given Section 4. The variable u(t) may be the ramp function used to imple-

Certan properties of the Fourier coefficients (18) are key ment a PWM scheme, or may be a square wave of source volt-
for the analysis and are detailed below, age applied to* resonant tank circuit in a resonat cvnvertor.
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To apply the generalized averaging scheme to a converter withL 7 = 100tiF
model (23), we simply compute the relevant Fourier coeffi- L = 197pH
cients of both sides of (23), i.e.

d (f(z,u)), (24)

for the k-th coefficient. A first step in simplifying the model 14
is to incorporate the rule for computing the derivative of the +
k-th coefficient. We obtain

d 
V,= 1.9.5

d , W, = -jkw .( 4), + ( (z, u)) . (25) -1+

-14
The second term on the right-hand side of (25) can be sim-
plified into explicit functions of the coefficients (z), and (u),
using describing functions. The essence in modeling is to re-
tain only the relatively large Fourier coefficients to capture
the interesting behavior of the system. As previously dis-
cussed. we would retain only the index-zero (DC) coefficients
for a fast switching PWM circuit to capture the low frequency
behavior. The result would be precisely the state-space aver-
aged model. For a resonant converter which has some of its
states exhibiting predominantly fundamental frequency, sinu-
soidal waveforms and some of its states exhibiting predoin-
inantly DC (or slowly varying) waveforms, we would retain
the index-one (and minus one) coefficients for those states "" . .Ol.e..,

exhibiting sinusoidal-type behavior and the index-zero coeffi- t
cients for those states exhibiting slowly varying behavior. V

The method is demonstrated on some examples in the fol-
lowing section.

4- ~ 5t4 .Gels @.@i 0.002

4 Examples t

Series Resonant Converter with Voltage Source Load Figure 2: DC-DC Serie Resonant Converter with Voltage
The first example to be considered is the series resonant con- Source Load
verter of Figure 2 that has a voltage source load. The circuit
parameters are as given in the figure and the diodes are as-
sumed to be ideal. Note that the resonant tank frequency is
approximately 36KHz.

A state-space model for this circuit takes the form

d . d -
i = j{-" - Vian +(i 1  = - + {-(v), - .(sgn(i)), +

d = L ( V.s(V)gn(gsin(gw.tV)g)n)n)+

.;V = (6 d 1

where sgn(e) indicates the sign function. Typical waveforma =IM) -iw.(V)s + t(i), (27)

for this circuit are shown in the figure. These waveforms were Note that the elements of the two component state vector of
generated by stepping the drive frequency between 38KHz (27) are complex Fourier coefficients, and so this model actu-
and 40KHz. One of the important features of the waveforms ally corresponds to a fourth-order state-space model with real
is that following each step change in the driving frequency, variables. The corresponding real fourth-order model could
the waveforms appear to be amplitude modulated sinusoids, be obtained equivalently from the index-(-l) coefficients. If
The waveforms evidently settle down to an approximately si- the window length is taken to be T = 2w/jw., the term
ntsoidal steady state. For this reason, these waveforms may
be ve-v well approximated with the fundamental frequency 2
terms in the Fourier series (17). We are led to examine a (sgn(sin(w.1)))j = -J- (28)
model containing only the coefficients (i), (0)-,( ), and r

This can be obtained by considering the application of is simply the constant amplitude of the first coefficient of the
the operator (*), (or equivalently (e)-,) to the model (26), Fourier series for a square wave. The term (sqn(ifll can be
i.e. e,,lh:atd iising the describinT: f'-ctin appi vachm by assulmun&
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i(t) is approximated as a sinusoid over each interval of length By considering perturbations around this steady state solu-
T. In this case, we have tion it is possible to compute the transfer function from in-

put switching frequency . to the capacitor voltage amplitude
(sqn(i)), = 2eJL(')'. (29) II(v),Il. This is given by

2r

Consequently, the model (27) is approximated with the time- - MW.K+ (.34)
invariant model s+ K + 2ES2 + KEs + A2

.j2 where At = 1I(v)"ll, K = 2V./rAw., wo = I/LC, E

di =, - } + W, and A = w -w. A root locus of the poles of this
d ) transfer function is shown in Figure 4. The plot shows the

= -jr) -w.(vi, + . (30) location of the poles u the load voltage V increases from
zero to V0. The poles are seen to be damped for 0 < V. <

The variables w, and V, may be considered as external in-

puts to this model. One question that arises is how well the
magnitudes of the complex coefficients F . . . ..

11 W I)j = (Re(i),)2 + (Im(i)1)2  linin . .... 6__

: .... 2 1/2 . .lv o

...(V) --(R e(v),)" + .(31) ........ +. ........ S ..(3.
II (i),ll = /(Re~ihp (Ira~i),) =  I • ..- .--- ... ... " .... ............... Zt

coincide with the amplitude of the waveforms in Figure 2. :
The simulation of Figure 3 compares precisely these quanti- ......... .........

• ...,;.. . , . ..: .. .. .... .. ........ ...... . ... .........
i and

.- ... . ----......... .......

. -. -U :. * legism' Ka

0 4 ,.7,E-4 0.0015 -.00225 -

Figure 4: Root Locus of Small Signal Poles as Load Voltage
00o.: • and II(')41 Varies from Zero to V1V.. 

For small values of V., there is a pair of poles located
0. M. near ±j(w. - wo). This pair evidently governs the relatively

slow amplitude modulation seen in Figure 3. One argument
Ifor the presence of this slow amplitude modulation is that

-400. 0. 7.5t-4 0.001_ 0.0022__ 0._03 it is the result of beating between oscillations at the natural
0. 1.I-4 0.001s 0.002 t. frequency ico and the driving frequency w.. Note that the

Figure 3: Amplitudeof First Coefficients Compared to Actual locus of Figure 4 closely resembles the locus of reference 141
Wa efoMS that was determined using an "exact" sampled-data model.

It is also of interest that the transfer function (34) has a
ties. This figure plots on the same axes the waveforms v() right-half plane zero for A < 0, that is for frequencies below
and II(r)i(i)1I for the case where w. undergoes a step cha..ge, resonance.
and the figure similarly plots i(t) and ll(ih (Lfl. It is evident One interesting feature of the simulation of Figure 3 is that
from the figure that the correlation between the two types of the high frequency modes of the model (34) are not evident in
waveforms is excellent. the transient response. This can be attributed to the fact that

The utility of the method can now be realized. For instance, these modes are weakly coupled to the input corresponding
it is straightforward to obtain a steady state solution for this to perturbations in driving frequency w,. 0
model by setting the derivatives of (v), and (i), to zero. This
solution can be computed in a closed form. After obtaining DC-DC Series Resonant Converter with Capacitor
a steady state solution, the model may be linearized about Load A more complex example is the series resonant con-
the steady state to obtain small signal transfer functions from verter with a capacitor load that is shown in Figure 5. For
inputs such as switching frequency w or source voltage V to this example, a state-space model can be written as
variables such as (v), or (i)a. For purposes of illustration, we
carry out this procedure here. d "

The steady state solution is determined to be i = -- v,,.gn(i) + V.gn(sin(w t))}
di L

( =) 
(32) T, =

r II - ;, LCI d I
W = j,.C(v)*'. (33) vo -(ab(,) - ,,oR}. (.)

5



L =197pH C= IOOnF nF(0

0. ?.59-4 0.0015225 0.003

C . Im F 250. _ _ _ and ( _ _

4. 7.51-4 0.0015 0.00225 0 0.01

2.
S R 1 .6a go ,.- (P.b *

0. .5s-4 0.005 0.02 S 0.03

Figure 6: Comparison of Transient Waveforms of Avaraged
Model with Waveforms of Underlying Resonant Converter

Figure 5: DC-DC Series Resonant Converter with Capacitor with Capacitor Load
Load

Here. g-7(e) and ab.(e) are, respectively, the sign and abso-
lute value functions. 4 = IOKHz

In our analysis, we retain the fundamental frequency D = 0.5
Fourier coefficients for i and v and the DC coefficient for
v.. This choice can be motivated by studying the converter t1

waveforms and noting tbat the variables i and v exhibit pre- 4I + 54
dorninar'lv sinusoidal behavior while the output voltage v.
exhibits rather slowly varying dynamical behavior. If this was =180PH
not the case, more terms could be retained in the averaged
model. The key steps in applying the averaging operation T
to the model (35) are in computing (sgn(i)t,), and (abs(i))o.
These can be determined using describing function methods if
i and v are considered to be sinusoidal and v. is approximated Figure 7: Up-Down Converter
with a constant term. With these simplifying assumptions,
we find

( where the variable u takes the values 0 and 1 which corre-
* (.s9(i)to), ( (36) spond to the instaneous switch position. For nominal PWM

operation at the fixed frequency f. = w,/2r, the state-space
(abs(i))o ! ,. (37) averaged model can be obtained by applying the one-cycle av-

- ) eraging operation (*)o to the model (.38). A refinement of the

In order to verify the obtained average model, a simulation state-space averaged model can be obtained by considering

that compares waveforms generated by this model with wave- an additional term in the series (7) that corresponds to the

forms of the underlying system is shown in Figure 6. As fundamental component of the ripple. For this, we consider

is evident from the figure, the averaged model predicts the the application of both (9)o and (a), to the model (38). The

transient behavior quite accurately. Analysis steps similar to result is

those carried out in the previous example could be performed, d
but we omit the details. * W(z)o = A(z)o + B((z)o(u)o + (r)a(u)-, + (.r)-I(u)) +

b(u)o + I
PWM Up-Down Converter In this final example, we il- d + B((r),(u)o + (1)o(u),) + b(u)a.X39)
lustrate how to refine the method of state-space averaging by T -
including higher order terms in the Fourier series expansion
(17). Tlhe converter of Figure 7 operating in continuous con- Note that the rule (22) is used to approximate quantities like
duct ion mode can be modeled with a second order state-space (xu)o and (ru),. For open-loop operation, (u)o and (u), are
model of the form constant, and so the model (39) is linear and time-invariant

in this case. A simulation of an open-loop transient is shown
d in Figure 8. The figure compares the inductor current wave-

r = Ax + uBz + bu + f (38) form of the actual circuit, the inductor current waveform of

6



41
in analyzing resonant-type converters. Further, the approach
offers refinements to the theory of state-space averaging that

1ss-avg for permit ripple estimates and offers a framework for analysis
and design when "small ripple" conditions do not hold. The
method may find applications in simulation as well as design
since it i2 Considerably easier to simulate au averaged model
than a switched model.

A Time-Varying Frequency

As briefly discussed in Section 3, the analysis based on (17)
ref i and (18) is valid if ta, is constant. In the case where the

frequency ,.(t) is time varying, it is appropriate to consider
0. 5S an instantaneous phase function defined via

Figure & Comparison of Refined State-Space Averaged (t)= (41)
Model with Traditional State-Space Averaged Model In this framework, the Fourier analysis should be performed

with respect to the basis functions {e~k(t)} for 0() in some
the state-space averaged model, (i)o which is the dc compo- interval (01 - 2r,Oi rather than the basis {eJt'}. The time
nent of the inductor current of the refined model (39), and interval for the analysis now depends on the instantaneous
an inductor current waveform reconstructed from the refined phase function in the following way. Define T(t) to be the
averaged model determined by duration of time so that the phase function varies by exactly

2w on the interval (1 - T(t), t]. That is, for a particular time
a(t) (i)_i(t)e- ' + ()o(t) + (i),(t)e' ° . (40) ti, T(f,) is defined by

The switching frequency has been selected to be relatively Ot = 0(11) (42)
low so that the ripple is emphasized. As can be seen from the
figure. the additional term in (39) significantly decreases the 01 - 2w = Ot|- T(t,)}. (43)
error be:ween the waveform of the averaged model and the
underlying system. Evidently, it is possible to include more Now for the interval (1 - T(t),tj, the natural generalization
terms in %he Fourier series representation to further decrease of (17) is
approximation error.

The reIned averaged model is especially useful for analysis - T(t) + s) = "(z)&(t)e~k(l - qrJ+) (44)
and control d.sign in the case where ripple is not small. For
instance, the eigenvalues of an equivalent continuous time for 3 E (0,T(t). In this case, the Fourier coefficients (r),(t)
model derived from an exact sampled-data model for the need to be defined via
present example can be determined to be ,_E-d

A 1. 2 T - lo ( A,. {, (T ) ) = (- 1.029 1jl .328) * 104 .

Note tha: $(T) is the trausition matrix for (38). In compar-
ison, the eigenvalues of the state-space averaged model are = T(itz(i - Tt +*
given by Jo +

.2:
"'

u -(-1.029 1j1.230) * 104 wt - T(t) + s)ds (45)
while those of the refined model are given by where s() in the first line of (45) represents a local inverse

A'7" ' d = (-1.029 : jl.325) * 104, map from phase to time. An easy calculation performed after
1 ±j5.149) * 10, changing the variable of integration in (45) by a = T(1) - s(-1.029 - .49*10,yields

(-1.029 ± j7.707) * 10.

One pair of the eigenvalues of the refined model is seen to d(ze () = r(t- T(t)e-J(lT().{t- T(}))T(t)+

approximate the eigenvalues of the underlying system much fa(*){j(t - G)e-Jkel-I.(t -)

more closely than those of the usual state-space averaged {a( u) - jkwl(t - u)}.(t -

model. * (46)
This formula is equivalent to

5 Conclusions d = - - +

A new a.-proach to averaging in power electronic circuits has
been in:oduced, and the method has been seen to be useful (.0) + ((1- - n.)z)(t). (47)
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Another simple calculation yields 112) N.N. Bogoliubuv and Y.A. Mitropolsky, Asymptotic

d Mt Methods in the Theory of Nonlinear Oscillations, Hin-
dT(t) = - (48) dustan Publishing Corp., Delhi, India, 1961.rW, ) I .{t- T(t)}"

[131 A. Geib and W.E. Vander Velde, Multiple-Input Describ.
It ,c now clear that for the case where w, is constant, (47) r ing Functions and Nonlinear Si,,tem Design, McGraw-
duces to (20). Furthermore, for slowly varying w,(t), the last Hill Book Co., 1968.
term in (47) is well approximated by -jkw.(z). The term

t - T(t))e-k ~tr .{t - T(t)}T(t) is also guaranteed to [141 A.R. Bergen and R.L. Franks, "Justification of the De-
be small if _.(t) is slowly varying since T(L) is given by (48). scribing Function Method," SIAM J. Control, vol. 9, no.

Another important consequence of the formula (47) is that 4, Nov. 1971.
there is no direct feedthrough term into (z)k(t) from w.(t).
Hence. in the case where the frequency w0(t) undergoes a
step change, we observe no step (or impulsive) behavior in
(Z),(L). This is of interest in the examples based on resonant
convertfrs.
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